شبکه نوآوری

هوش مصنوعی چیست؟

هوش مصنوعی یا به عبارتی Artificial intelligence که امروزه با اصطلاح هوش مصنوعی AI نیز شناخته می‌شود، روشی نوین برای ساخت ابزارهایی هوشمند با الگوبرداری از هوش انسان می‌باشد. ابزاری که شبیه انسان فکر کند و به جای او تصمیم بگیرد. در حقیقت این فناوری همان ماشین برنامه‌نویسی شده به دست انسان است که با هدف سهولت در انجام امور روزمره طراحی شده است.
بسیاری از افراد، هوش مصنوعی را همچون رباتی در نظر می‌گیرند که به‌صورت فیزیکی قابل مشاهده می‌باشد. در حالی که در بیشتر موارد، این مفهوم در قالب پاسخی به رفتارهای انسان و برگرفته از علایق و گرایشات او ارائه می‌شود. هوش مصنوعی (هوش مصنوعی AI) شاخه‌ای گسترده از علوم کامپیوتر است و یکی از علوم میان رشته‌ای محسوب می‌شود. منظور از این مفهوم، ماشینی است که همانند انسان فکر کند و توانایی تقلید رفتار انسان را داشته باشد. چنین ماشینی می‌تواند وظایفی را انجام دهند که به هوش انسانی نیاز دارد.

آیا ماشین‌ها می‌توانند فکر کنند؟

در سال‌های جنگ جهانی دوم، نیروهای آلمانی برای رمزنگاری و ارسال ایمن پیام، از ماشین Enigma استفاده می‌کردند. در آن زمان آلن تورینگ، ریاضیدان و دانشمند انگلیسی، در تلاش برای شکست این کدها برآمد. کمتر از یک دهه بعد و برای بار دوم، تورینگ با یک سؤال ساده تاریخ را تغییر داد: «آیا ماشین‌ها می‌توانند فکر کنند؟»
مقاله تورینگ با عنوان «محاسبات ماشینی و هوش» در سال ۱۹۵۰، و پس از آن آزمایش تورینگ، هدف اساسی و چشم‌انداز این حوزه را تعیین کردند. هوش مصنوعی، در واقع، شاخه‌ای از علوم کامپیوتر است که سعی می‌کند به این پرسش تورینگ، پاسخ مثبت دهد؛ این موضوع، تلاشی برای تکرار یا شبیه‌سازی هوش انسان در ماشین‌ها است.

رویکردهای هوش مصنوعی
استوارت راسل و پیتر نورویگ، ۲ دانشمند علوم کامپیوتر، چهار رویکرد مختلف را بررسی کردند که به‌طور تاریخی زمینه هوش مصنوعی را تعریف کرده‌اند. این رویکردها عبارتند از:
• انسانی فکر کردن
• منطقی فکر کردن
• انسانی عمل کردن
• منطقی عمل کردن
دو ایده اول، یعنی انسانی فکر کردن و منطقی فکر کردن، مربوط به فرایندهای تفکر و استدلال هستند؛ در حالی که دو مورد بعدی (انسانی عمل کردن و منطقی عمل کردن)، با رفتار سر و کار دارند. در این رویکردها، نورویگ و راسل، بر عوامل منطقی رسیدن به بهترین نتیجه تمرکز دارند.

مزایا و معایب هوش مصنوعی چیست؟

هوش مصنوعی (هوش مصنوعی AI) یکی از تکنولوژی‌های پرکاربرد است که به ساده‌سازی فرایندهای زیادی کمک می‌کند.
کاربردهای این تکنولوژی، از رتبه‌بندی صفحات وب گرفته تا طراحی لباس بر اساس سلیقه کاربران، بسیار متفاوت و گسترده است. منظور از هوش مصنوعی، ماشینی است که همانند انسان فکر کند و توانایی تقلید رفتار انسان را داشته باشد. دیدگاه‌های مختلفی پیرامون هوش مصنوعی وجود دارد. عده‌ای نسبت به این تکنولوژی بسیار خوش‌بین هستند و آن را نعمتی برای بهبود زندگی انسان‌ها می‌دانند. در مقابل، گروهی نیز هستند که معتقدند استفاده از هوش مصنوعی می‌تواند برای انسان فاجعه بار باشد. برای پی بردن به دلایل وجود این دو نوع نگاه، لازم است مزایا و معایب این تکنولوژی را بشناسید. در این مطلب، برخی از معایب و مزایب تکنولوژی هوش مصنوعی را بررسی می‌کنیم.
• مجال کمتر برای خطا و اشتباه

از آن جایی که تصمیماتی که توسط ماشین‌ها گرفته می‌شود بر اساس سوابق قبلی داده‌ها و مجموعه‌ای از الگوریتم‌ها است، احتمال خطا در این نوع تصمیم گیری کاهش پیدا می‌کند. این موضوع، دستاورد مهمی محسوب می‌شود؛ چرا که باعث می‌شود مشکلات پیچیده‌ای که به محاسبه دشوار نیاز دارند، بدون هیچ خطایی حل شوند. مجال کمتر برای خطا و اشتباه سازمان‌های تجاری پیشرفته، برای تعامل با کاربران، از دستیارهای دیجیتال استفاده می‌کنند. این کار موجب صرفه جویی در وقت و ارائه خدمات بهتر و سریع‌تر به کاربران می‌شود.

• تصمیم گیری درست
این که ماشین‌ها، فاقد هر گونه احساسی هستند، باعث می‌شود که کارآیی آن‌ها افزایش پیدا کند؛ چرا که می‌توانند در یک بازه زمانی کوتاه، تصمیم درست را بگیرند. بهترین نمونه در مورد این ویژگی، استفاده از ماشین‌ها در مراقبت‌های پزشکی است. ادغام ابزارهای هوش مصنوعی در بخش مراقبت‌های پزشکی، با به حداقل رساندن خطر تشخیص نادرست، کارایی اقدامات درمانی را بهبود می‌بخشد.

• به کارگیری هوش مصنوعی در شرایط مخاطره آمیز
در برخی شرایط خاص که ایمنی انسان‌ها به خطر می‌افتد، می‌توان از ماشین‌هایی استفاده کرد که مجهز به الگوریتم‌های از پیش تعریف شده هستند. امروزه دانشمندان از ماشین آلات پیچیده برای بررسی شرایط خاصی مانند کف اقیانوس‌ها استفاده می‌کنند. این مورد، یکی از بزرگ‌ترین محدودیت‌هایی است که هوش مصنوعی برای غلبه بر آن به انسان کمک می‌کند.

• امکان کار کردن به‌صورت مداوم
ماشین‌ها، بر خلاف انسان‌ها، خسته نمی‌شوند؛ حتی اگر مجبور باشند برای ساعت‌های متوالی کار کنند. این ویژگی ماشین‌ها، مزیت مهمی نسبت به انسان‌ها محسوب می‌شود که برای حفظ کارایی‌شان، هر از گاهی به استراحت نیاز دارند. درصورتی‌که کارایی ماشین‌ها، تحت تأثیر هیچ عامل خارجی قرار نمی‌گیرد و چیزی مانع از کار مداوم آن‌ها نمی‌شود.
معایب هوش مصنوعی هم به شرح زیر است:
• هزینه بالای استفاده هوش مصنوعی ai
زمانی که هزینه‌های نصب، نگهداری و تعمیر سیستم‌های هوش مصنوعی را در کنار یکدیگر قرار می‌دهیم، این تکنولوژی، پیشنهاد گران قیمتی محسوب می‌شود. به‌صورتی که تنها افراد و گروه‌هایی که بودجه هنگفتی دارند، می‌توانند آن را اجرا کنند و مشاغل و صنایعی که بودجه کافی ندارند، پیاده‌سازی این تکنولوژی را در فرآیندها یا استراتژی‌هایشان دشوار می‌بینند.

• وابستگی به ماشین‌ها
با افزایش وابستگی انسان به ماشین‌ها، به دوره‌ای می‌رسیم که کار کردن بدون کمک ماشین برای انسان دشوار می‌شود. همان طور که در گذشته نیز مشاهد کردیم، وابستگی انسان به ماشین‌ها، قطعاً افزایش پیدا خواهد کرد. بنابراین، به مرور زمان، توانایی‌های ذهنی و فکری انسان کاهش پیدا می‌کند.

• جایگزینی مشاغل کم مهارت
این مسئله، تاکنون، دغدغه اصلی حامیان تکنولوژی بوده است. به احتمال زیاد، هوش مصنوعی جایگزین بسیاری از مشاغل کم مهارت شود. از آن جایی که ماشین‌ها می‌توانند به‌صورت ۲۴ ساعته در هفت روز هفته و بدون وقفه کار کنند، صاحبان صنایع ترجیح می‌دهند که به جای انسان‌ها، بر ماشین‌ها سرمایه گذاری کنند. همزمان که به سمت دنیای اتوماتیک حرکت می‌کنیم (جایی که تقریباً همه کارها توسط ماشین‌ها انجام می‌شوند)، احتمال بروز بیکاری در مقیاس گسترده بیشتر می‌شود. نمونه‌ای از این موضوع، مفهوم اتومبیل‌های بدون راننده است. اگر این نوع اتومبیل‌ها آغاز به کار کنند، میلیون‌ها راننده در آینده بیکار خواهند شد.

• کار محدود
ماشین‌های هوش مصنوعی، بر اساس آموزش‌ها و برنامه‌ریزی‌شان، وظایف خاصی را انجام می‌دهند. تکیه کردن به ماشین‌ها برای سازگاری با محیط‌های جدید، خلاق بودن آن‌ها و تفکر خارج از چارچوب، اشتباه بزرگی خواهد بود. چنین چیزی امکان‌پذیر نیست؛ چرا که حوزه تفکر ماشین‌ها، تنها به الگوریتم‌هایی که برای آن آموزش دیده‌اند، محدود شده است.

انواع هوش مصنوعی

هوش مصنوعی به چهار مدل کلی ماشین‌های واکنشی، حافظه محدود، نظریه ذهن و خود آگاهی تقسیم می‌گردد. هر یک از این مدل‌ها با توجه به هدف و قابلیت‌هایشان در حوزه‌های متعددی کاربرد دارند.
• ماشین‌های واکنشی (Reactive Machines)
یکی از قدیمی‌ترین مدل‌های هوش مصنوعی، ماشین‌های واکنشی می‌باشد که تنها برای انجام وظایف تخصصی طراحی شده‌اند. این ماشین‌ها قادر به ذخیره اطلاعات نیستند. در نتیجه امکان تصمیم‌گیری بر اساس تجربیات گذشته را نداشته و تنها برای پاسخگویی به نیاز افراد ساخته شده‌اند. موتور جستجوی گوگل مثال خوبی برای این ویژگی می‌باشد.

• حافظه محدود (Limited Memory)
در این مدل، با کمک هوش مصنوعی امکان ذخیره اطلاعات و تصمیم‌گیری بر اساس داده‌های قبلی وجود دارد. در واقع اساس رفتار یک ماشین، سرنخ‌هایی است که در گذشته ارائه شده است. احراز هویت و شناسایی افراد در سامانه‌های مختلف از این نوع می‌باشند.
احراز هویت توسط اینترنت اشیا – انواع هوش مصنوعی هوش مصنوعی به چهار مدل کلی ماشین‌های واکنشی، حافظه محدود، نظریه ذهن و خود آگاهی تقسیم می‌گردد.

• نظریه ذهن (Theory of Mind)
نظریه ذهن بدان معناست که هوش مصنوعی می‌تواند به شکل بهتری احساسات، عواطف و اعتقادات انسان‌ها را درک کند و سپس از این اطلاعات برای تصمیم‌گیری خود استفاده نماید. این شاخه از علم همچنان در حال توسعه می‌باشد و در صورت موفقیت آن تحول عظیمی در زندگی انسان‌ها رخ خواهد داد.

• خود آگاه (Self-aware)
هدف از طراحی مدل خود آگاه، شبیه‌سازی مغز انسان می‌باشد. به شکلی که میزان درک یک ماشین به اندازه آگاهی و درک یک انسان باشد. در این فرضیه یک ربات، قدرت درک احساسات و نیاز دیگران را داشته و همانند یک انسان با آنان ارتباط برقرار خواهد کرد.

نقش هوش مصنوعی در تجارت چیست؟
با رشد فعالیت رایانه‌ها، گوشی‌های هوشمند و شبکه‌های اجتماعی کمتر کسب و کاری هنوز به شکلی سنتی به فعالیت خود ادامه می‌دهد. با نگاهی به اطرافمان به تأثیر این مهم در رفتار و سبک زندگی افراد پی خواهیم برد. در دنیای امروز، افراد با زنگ ساعت هوشمند خود از خواب بر می‌خیزند. به تقویم کاری خود که در نرم افزار هوشمند تنظیم شده است مراجعه می‌کنند. در طول مسیر محل کار از شبکه‌های اجتماعی استفاده می‌کنند و تا پایان روز انتخاب‌های بسیاری را بر اساس پیشنهاد پلتفرم‌های مختلف انجام می‌دهند. این همان قدرت انکار نشدنی یک محصول فراگیر است.
در واقع می‌توان گفت کاربرد هوش مصنوعی در کسب و کار نقش مهمی در سرعت بخشی و ساده‌سازی کلیه اتفاقات روزمره داشته است. در تجارت نیز به همین شکل می‌باشد، کسب و کارها در حال حاضر از این دستاورد برای موفقیت در سه زمینه اصلی استفاده می‌کنند:
• هوشمندسازی محصولات و خدمات
• هوشمندسازی فرآیندها از طریق تجزیه و تحلیل داده‌ها
• تعامل با مشتریان و کارمندان
• هوشمندسازی محصولات و خدمات
استراتژی هوش مصنوعی در تجارت، بر پایه استفاده بهینه از یک محصول و با هدف رضایت کاربران و افزایش فروش می‌باشد. ارائه خدمات مبتنی بر هوش مصنوعی نیز به معنی ارائه سرویسی هدفمند به مشتریان است که منجر به شکل‌گیری تعاملات مشتریان و وفاداری آنان به یک سازمان خواهد شد. بهره‌مندی از این فناوری در هر دو مبحث محصول یا خدمت، موجب افزایش سود هر کسب و کاری می‌گردد.
به‌طور مثال یک سرویس سفارش آنلاین غذا را در مقایسه با ثبت سفارش سنتی در نظر بگیرید. در زمان ثبت سفارش غذا به شکل سنتی امکان رهگیری سفارش،‌ اندازه‌گیری میزان رضایت مشتریان، مدت زمان معطلی و سایر موارد قابل بررسی نمی‌باشند، در حالی‌که با تکیه بر فناوری هوش مصنوعی و با استفاده از داده‌های دریافتی از هر سرویس، می‌توان رفتار مشتریان را تحلیل کرده و برای بهبود کسب و کار کوشید. فراموش نکنیم در بازار کنونی، کسب و کاری موفق‌تر خواهد بود که سعی در ساده‌سازی زندگی افراد داشته و با ارائه راهکارهای هوشمندانه با سرعت بیشتری به نیاز آنان پاسخ دهد.

• هوشمندسازی فرآیندها از طریق تجزیه و تحلیل داده‌ها
یکی از اهداف هوش مصنوعی، تسهیل فرآیندهای مختلف برای کاربران می‌باشد. در هر سازمان نیز با کمک این فناوری می‌توان در مراحل مختلف اعم از استراتژی،‌ تولید، ارائه محصول و خدمات، داده‌های مختلف را جمع‌آوری کرده و سپس مورد بررسی قرار داد. به این شکل نقاط قوت و ضعف یک سازمان شناسایی شده و برای رشد و توسعه آن امکان برنامه‌ریزی وجود خواهد داشت. در واقع هوش مصنوعی فرصت‌های زیادی را برای سفارشی‌سازی و بهینه‌سازی به همراه دارد.

• هوشمندسازی فرآیند و تحلیل داده
مثال سفارش آنلاین غذا در این بخش نیز کاربرد دارد. با اطلاع از میزان نارضایتی مشتریان یک سازمان، نهادهای نظارتی آن قادر به ارائه راهکارهایی برای حل این مشکل خواهند بود. در واقع بهترین روش این است که تشخیص دهید بهبود کدام بخش‌ها برای کسب و کار شما اولویت دارند و کاربرد هوش مصنوعی در کسب و کار شما چیست؟ باید بدانید کجا بیشترین ارزش را به شرکت شما می‌افزاید؟ سپس تصمیم بگیرید که کسب و کار شما چه هدفی دارد و هوش مصنوعی برای رسیدن به این هدف چه کمکی خواهد کرد؟ به این ترتیب، می‌توانید درک درستی از هوشمندسازی فرآیندهای سازمانتان پیدا کنید.

• تعامل با مشتریان و کارمندان
مدیریت ارتباط با مشتری یکی از ارکان اصلی هر کسب و کاری است. برقراری تعامل صحیح با مشتریان و ذخیره‌سازی اطلاعات آنان برای ارائه خدمات بهتر بسیار ضروری می‌باشد. با کمک هوش مصنوعی می‌توان علایق، اعتقادات و تمایلات هر کاربر را شناسایی کرده و بر اساس نیاز او پیشنهادات جذابی ارائه نمود. سرویس‌های ارسال ایمیل و یا اتوماسیون‌های CRM نمونه خوبی برای این موضوع هستند. دسته‌بندی کاربران بر اساس پارامترهای مشخص و ارائه راهکار به موقع در زمان بروز مشکل،‌ راز موفقیت سازمان‌های بزرگ می‌باشد. به‌طور مثال با تکیه بر هوش مصنوعی می‌توان کاربرانی که در تاریخ مشخصی متولد شده‌اند را شناسایی کرده و با ارسال یک ایمیل هوشمند، تخفیف‌های ویژه‌ای را به‌عنوان هدیه به آنان ارائه نمود.
اما بسیاری از کارمندان، هوش مصنوعی را تهدیدی برای از دست‌دادن شغل خود دانسته‌اند. در حالی‌که این فناوری با هدف مدیریت تعاملات کارکنان و مشتریان طراحی گردیده است.

معایب و مزایای استفاده از هوش مصنوعی در کسب و کار
همانطور که قبل‌تر به آن اشاره شد استفاده از هوش مصنوعی نگرانی‌های بسیاری برای افراد به همراه دارد. نگرانی در مورد امنیت شغلی، کمرنگ شدن احساسات، کنترل رفتار توسط ماشین‌ها و حکمرانی ربات‌ها، همه از این موارد هستند. از مزایای هوش مصنوعی می‌توان به انجام امور با دقت بالا، کار مداوم بدون نیاز به استراحت، تصمیم‌گیری درست و به دور از احساسات در شرایط مختلف اشاره نمود.
اما در مواقعی ممکن است همین نکات مثبت نیز منجر به بروز مشکلاتی شوند. به بیان دیگر تصمیم‌گیری بدون در نظر گرفتن ابعاد عاطفی، خطر بزرگی برای انسان خواهد بود. از طرفی وابستگی بیش از حد به ماشین‌ها،‌ نرم‌افزارها، ربات‌های هوشمند نیز موجب کاهش راندمان فعالیت افراد شده‌اند. تصور کنید تنها یک ساعت بدون اینترنت و گوشی همراه در اتاقی تنها بمانید. بدون این ابزار در بسیاری از مواقع حس سردرگمی و اضطراب در افراد نمایان می‌شود و این ناشی از عدم تاب‌آوری آنان می‌باشد. نکته دیگر هزینه بالای استفاده از هر ابزار است. بخش قابل توجهی از هزینه‌های ماهانه افراد صرف استفاده از فناوری‌های گوناگون می‌شود. در تجارت نیز ممکن است نکات مثبت و منفی بسیاری برای استفاده از هوش مصنوعی وجود داشته باشد، اما مزیت‌ها همواره بر معایب این تکنولوژی برتری دارند.

نمونه‌های هوش مصنوعی
تبلیغات مرتبط، یکی از کاربردهای هوش مصنوعی است که به منظور هدفگیری مخاطبان اصلی و رساندن پیام مرتبط به آن‌ها، انجام می‌شود. اما این تکنولوژی، کاربردهای فراوان دیگری نیز دارد. رتبه‌بندی صفحات وب بر اساس علایق کاربر، پاسخ‌دهی خودکار در نرم‌افزارهای پیام رسان، طراحی لباس بر اساس سلیقه کاربران و فناوری تشخیص چهره، نمونه‌هایی از کاربردهای این تکنولوژی هستند.
هوش مصنوعی پدیده‌ای است که در آن یک ماشین با توانایی درک، تحلیل و یادگیری از طریق الگوریتم‌های ویژه، به‌صورت یک برنامه هوشمند عمل می‌کند. ماشین‌های هوش مصنوعی می‌توانند الگوهای رفتاری انسان را به خاطر بسپارند و مطابق با ترجیحات آن‌ها سازگار شوند. برخلاف تصور عمومی، هوش مصنوعی تنها به فناوری اطلاعات یا صنعت فناوری محدود نمی‌شود. این تکنولوژی، در زمینه‌های دیگر مانند پزشکی، کسب و کار، آموزش، قانون و تولید نیز به‌طور گسترده مورد استفاده قرار می‌گیرد. آمار زیر، وضعیت رشد هوش مصنوعی را نشان می‌دهد:
• در سال ۲۰۱۴، بیش از ۳۰۰ میلیون دلار در استارتاپ‌های هوش مصنوعی سرمایه گذاری شد که نسبت به سال قبل، ۳۰۰ درصد افزایش داشت.

• تا سال ۲۰۱۸، ۶ میلیارد دستگاه، به‌صورت پیش فرض، درخواست پشتیبانی می‌کنند.
• تا پایان سال ۲۰۱۸، «دستیارهای دیجیتال مشتری»، مشتریان را از طریق چهره و صدا تشخیص می‌دهند.

• هوش مصنوعی، تا پایان دهه، جایگزین ۱۶ درصد مشاغل آمریکایی خواهد شد.

• ۱۵ درصد از کاربران تلفن‌های اپل از قابلیت تشخیص صدا Siri استفاده می‌کنند.

چند نمونه از کاربردهای هوش مصنوعی را که در حال حاضر به‌صورت گسترده مورد استفاده قرار می‌گیرند، بررسی می‌کنیم.

• سیری  (Siri)

سیری، یکی از محبوب‌ترین برنامه‌های دستیار شخصی است که توسط اپل در آیفون و آیپد ارائه می‌شود. این دستیار مجازی، با صدایی دوستانه، به‌صورت روزمره با کاربر ارتباط برقرار می‌کند. سیری در یافتن اطلاعات، پیدا کردن مسیر، ارسال پیام، برقراری تماس صوتی، باز کردن اپلیکیشن‌ها و افزودن رویدادها به تقویم، به کاربر کمک می‌کند.

• تسلا  (Tesla)

تنها تلفن‌های هوشمند نیستند که به سوی هوش مصنوعی سوق پیدا کرده‌اند؛ خودروها نیز در این مسیر گام‌هایی برداشته‌اند. خودرو تسلا، نه تنها توانسته است تحسین‌های زیادی را برانگیزد، بلکه از قابلیت‌هایی مانند رانندگی خودکار، قابلیت پیش‌بینی و نوآوری مطلق تکنولوژی نیز برخوردار است.

• کاگیتو  (Cogito)

کاگیتو، نرم‌افزاری قدرتمند است که صدای مشتریانی را که برای مثال با واحد پشتیبانی یک شرکت تماس می‌گیرند، تجزیه و تحلیل می‌کند. این نرم‌افزار، براساس نتایج حاصل از بررسی‌ها، به‌صورت همزمان توصیه‌های رفتاری لازم را به کارمندان واحد پشتیبانی ارائه می‌دهد.

• نتفلیکس  (Netflix)
نتفلیکس، یک سرویس بسیار محبوب در زمینه محتوا بر اساس تقاضا است که با استفاده از تکنولوژی پیش‌بینی، پیشنهادهایی را بر اساس واکنش، علایق، انتخاب‌ها و رفتار کاربران ارائه می‌دهد. این فناوری، با بررسی سوابق پیشین، فیلم‌ها را بر اساس علاقه و واکنش‌های قبلی کاربران پیشنهاد می‌دهد.

• نست – گوگل  (Nest, Google)
نست، یکی از موفق‌ترین استارتاپ‌های هوش مصنوعی بود که در سال ۲۰۱۴ توسط گوگل خریداری شد. ترموستات هوشمند نست، برای صرفه‌جویی در مصرف انرژی، از الگوریتم‌های رفتاری براساس رفتار کاربران استفاده می‌کند. در هفته اول، کاربر، تنظیمات ترموستات را انجام می‌دهد تا داده‌های اولیه از رفتار او فراهم شود. پس از آن، نست می‌آموزد که کاربر در چه زمان‌هایی، چه دمایی را ترجیح می‌دهد و تمام سیستم‌ها را برای دستیابی به آن دما مدیریت می‌کند. این سیستم، برای صرفه جویی در مصرف انرژی، در زمان‌هایی که کسی در خانه نیست به‌صورت خودکار خاموش می‌شود. در حقیقت، ترکیبی از هوش مصنوعی و بلوتوث کم انرژی است.

• پرنده‌های بدون سرنشین  (Flying Drones)
پرنده‌های بدون سرنشین، پیش از این نیز محصولات را به خانه مشتریان می‌رساندند. اگرچه از این ابزار به‌صورت آزمایشی استفاده می‌شد. این پرنده‌ها، از نوعی سیستم یادگیری ماشین قدرتمند برخوردارند که می‌تواند از طریق سنسورها و دوربین‌های فیلم‌برداری، محیط را به مدل‌های سه بعدی تبدیل کند.
الگوریتم‌های تعیین مسیر حرکت، پرنده‌های بدون سرنشین را در مورد چگونگی و مکان حرکت راهنمایی می‌کنند. با استفاده از سیستم Wi-Fi، می‌توان هواپیماهای بدون سرنشین را کنترل کرد و از آن‌ها برای اهداف خاصی مانند تحویل محصول، ساخت فیلم یا گزارش اخبار استفاده کرد.

هوش مصنوعی «محدود» و «جنرال»
هوش مصنوعی هوش مصنوعی ai به دو دسته محدود و جنرال تقسیم شود. هر کدام از این دسته‌ها بر اساس قدرت و توانایی‌هایی که دارند به حل مسائل مختلف کمک می‌کنند.
هوش مصنوعی محدود یا ضعیف، توانایی حل مسائل محدودتری را دارد و در بخش‌های خاصی قادر به فعالیت است. به‌عبارت‌دیگر هوش مصنوعی محدود تنها در یک حوزه خاص عملکرد مناسبی دارد و در حوزه‌های دیگر قدرتش کم می‌شود؛ به‌عنوان‌مثال می‌تواند متن‌ها را از یک زبان به زبان دیگر ترجمه کنه اما ظرفیتش در حوزه‌های دیگر مانند تشخیص تصاویر یا برنامه‌ریزی استراتژیک پایین است.
در مقابل آن هوش مصنوعی جنرال یا قوی قرار می‌گیرد که توانایی حل مسائل در حوزه‌های مختلف را دارد و عملکردش در بسیاری از وظایف و فعالیت‌ها شبیه به انسان است. هوش مصنوعی جنرال این توانایی را دارد که در بیش از یک حوزه به‌صورت مؤثر عمل کند؛ به‌عنوان‌مثال می‌تواند توانایی تشخیص چهره را داشته باشد و درعین‌حال تک‌تک اعضای صورت مانند چشم، بینی و دهان را آنالیز کند.

چگونگی استفاده هوش مصنوعی
هوش مصنوعی AI با روش‌های مختلفی به حل مسائل پیچیده و ساده‌سازی کارهایی که قبلاً پرزحمت بودند کمک می‌کند. چگونگی استفاده از آن به شرح زیر است:
• تعیین مسئله
ابتدا باید مسئله خاصی که باید حل شود یا شغلی که باید خودکار شود را تعیین کنید.

• جمع آوری داده‌ها
اطلاعات مورد نیاز برای آموزش سیستم اطلاعاتی مد نظر را به دست آورید. این اطلاعات باید مناسب، دقیق و کامل باشند.

• انتخاب یک الگوریتم مناسب
برنامه هوش مصنوعی را انتخاب کنید که به بهترین وجه با موضوع مورد نظر مطابقت دارد. روش‌های مختلفی مانند درخت‌های تصمیم و شبکه‌های عصبی در دسترس هستند.

• آموزش سیستم هوش مصنوعی
سیستم هوش مصنوعی را با استفاده از داده‌های جمع آوری شده آموزش دهید. این امر مستلزم ارسال داده به برنامه و تنظیم آن برای افزایش دقت است. بعد از آموزش باید سیستم هوش مصنوعی را ارزیابی کنید تا دقت و قابلیت اطمینان آن را بسنجید.

• استقرار سیستم
پس از آزمایش و اثبات صحت باید آن را در مرحله تولید قرار دهید. این کار شاید مستلزم ادغام آن با سیستم‌های فعلی یا توسعه سیستم‌های جدید باشد.

• مدیریت مداوم سیستم هوش مصنوعی
برای اطمینان از عملکرد درست و پیش بینی‌های دقیق سیستم باید نظارت مستمر داشته باشید و آن را دائماً به‌روزرسانی کنید.

شاخه‌های هوش مصنوعی

• رباتیک
• تشخیص الگو
• شبکه‌های عصبی مصنوعی
• یادگیری عمیق
• تشخیص گفتار
• پردازش زبان طبیعی
• بینایی ماشین
• شبکه عصبی بازگشتی
• شبکه عصبی پیچشی
• هوش مصنوعی و یادگیری ماشین
• یادگیری تقویتی
• منطق فازی

سطوح مختلف هوش مصنوعی

فناوری‌های هوش مصنوعی بر اساس موارد زیر دسته بندی می‌شوند:
• ظرفیت تقلید ویژگی‌های انسان
• فناوری‌هایی که برای انجام این کار استفاده می‌شوند.
• کاربردهای دنیای واقعی و تئوری ذهن
بر اساس این ویژگی‌ها، تمام سیستم‌های هوش مصنوعی اعم از واقعی و فرضی به یکی از سه نوع زیر تقسیم می‌شوند:
• هوش مصنوعی باریک یا  ANI
• هوش مصنوعی عمومی یا  AGI
• ابر هوش مصنوعی یا ASI
• ANI
هوش مصنوعی ANI که به آن هوش مصنوعی ضعیف یا هوش مصنوعی باریک نیز گفته می‌شود تنها نوع هوش مصنوعی است که تا به امروز با موفقیت به آن دست یافتیم. ANI هدف گرا است و برای انجام وظایف منحصر به فرد مانند تشخیص چهره، تشخیص گفتار/ دستیاران صدا، رانندگی با ماشین یا جستجو در اینترنت طراحی شده و در تکمیل کار خاصی که برای انجام آن برنامه ریزی شده بسیار هوشمند است.
اگرچه این ماشین‌ها ممکن است هوشمند به نظر برسند اما تحت نظر مجموعه کوچکی از محدودیت‌ها کار می‌کنند؛ به همین دلیل است که این نوع معمولاً به‌عنوان هوش مصنوعی ضعیف شناخته می‌شوند. ANI هوش انسانی را تقلید یا تکرار نمی‌کند بلکه صرفاً رفتار انسان را بر اساس طیف محدودی از پارامترها و زمینه‌ها شبیه سازی می‌کند. تشخیص گفتار و زبان دستیار مجازی Siri در آیفون‌ها یا تشخیص دید اتومبیل‌های خودران را در نظر بگیرید که بر اساس سابقه خریدتان محصولاتی را به شما پیشنهاد می‌دهند. این سیستم‌ها فقط تکمیل وظایف خاصی را یاد می‌گیرند.

هوش مصنوعی ANI در دهه گذشته پیشرفت‌های متعددی را تجربه کرد و توسط دستاوردهای یادگیری ماشین و یادگیری عمیق تقویت شد؛ به‌عنوان‌مثال امروزه از سیستم‌های هوش مصنوعی در پزشکی برای تشخیص سرطان و سایر بیماری‌ها از طریق تکرار شناخت و استدلال انسانی استفاده می‌شود. ANI از پردازش زبان طبیعی یا NLP برای انجام وظایف گوناگون کمک می‌گیرد. NLP در چت‌بات‌ها و فناوری‌های مشابه هوش مصنوعی مشهود است و با درک گفتار و متن به زبان طبیعی با انسان‌ها به شیوه‌ای طبیعی و شخصی شده تعامل می‌کند. نمونه‌هایی از هوش مصنوعی باریک به شرح زیر هستند:
• الگوریتم RankBrain گوگل
• Siri توسط اپل
• Alexa توسط آمازون
• Cortana توسط مایکروسافت
• نرم افزارهای تشخیص چهره
• ابزارهای نقشه برداری
• ابزارهای مخصوص پیش بینی بیماری
• تولید و ربات‌های مخصوص پهپاد
• فیلترهای هرزنامه ایمیل
• ابزارهای نظارت بر رسانه‌های اجتماعی
• توصیه محتواهای مختلف به کاربر بر اساس رفتار او
• AGI
هوش مصنوعی قوی یا عمیق یک مفهوم ماشینی با هوش عمومی است که هوش یا رفتارهای انسان را تقلید می‌کند و توانایی یادگیری و استفاده از هوش خود را برای حل هر مشکلی دارد. AGI می‌تواند به گونه‌ای فکر کند، بفهمد و عمل کند که از انسان در هر موقعیتی قابل تشخیص نیست.
محققان و دانشمندان هوش مصنوعی هنوز به AGI دست پیدا نکردند. آن‌ها برای موفقیت در این زمینه باید راهی بیابند تا ماشین‌ها را آگاه کرده و مجموعه‌ای کامل از توانایی‌های شناختی را برنامه ریزی کنند. ماشین‌ها باید توانایی استفاده از دانش تجربی را در طیف وسیع‌تری از مسائل مختلف به دست آورند.
“K computer” که توسط شرکت فوجیتسو و موسسه RIKEN ساخته شده یکی از سریع‌ترین ابررایانه‌ها است. K computer بیشترین تلاش برای دستیابی به هوش مصنوعی AGI است اما با توجه به اینکه ۴۰ دقیقه طول کشید تا یک ثانیه فعالیت عصبی شبیه‌سازی شود؛ پس تعیین اینکه آیا هوش مصنوعی قوی خواهد بود یا نه دشوار است.
• ASI
ابر هوش مصنوعی یا ASI در واقع یک هوش مصنوعی فرضی است که فقط هوش و رفتار انسان را تقلید یا درک نمی‌کند. ASI جایی است که ماشین‌ها خودآگاه می‌شوند و از ظرفیت هوش و توانایی انسان فراتر می‌روند. ابر هوش مدت‌هاست که الهام بخش داستان‌های علمی تخیلی دیستوپیایی بوده است. در داستان‌های او ربات‌ها بشریت را زیر پا می‌گذارند، سرنگون می‌کنند یا به بردگی می‌گیرند.
ASI از نظر تئوری در هر کاری که انجام می‌دهیم از ریاضیات گرفته تا علوم، ورزش، هنر، پزشکی، سرگرمی‌ها، روابط عاطفی و … بهتر است. ASI حافظه بیشتر و توانایی سریع‌تری برای پردازش و تجزیه و تحلیل داده‌ها و محرک‌ها دارد؛ در نتیجه توانایی تصمیم گیری و حل مسئله آن بسیار برتر از انسان‌ها است. پتانسیل داشتن چنین ماشین‌های قدرتمندی ممکن است جذاب به نظر برسد اما این مفهوم پیامدهای ناشناخته زیادی دارد.

الگوریتم هوش مصنوعی چیست؟

برای حل یک دسته از مسائل می‌توان از الگوریتم‌های هوش مصنوعی مختلفی استفاده کرد. در بخش زیر انواع مختلف الگوریتم‌ها را با هم بررسی می‌کنیم.
• Naive Bayes
این الگوریتم بر اساس «قاعده بیز» است و برای تخمین احتمال وقوع یک رویداد استفاده می‌شود. این الگوریتم به‌عنوان یک طبقه بند احتمالاتی عمل می‌کند و برای طبقه بندی مسائل مانند تشخیص اسپم ایمیل یا تشخیص بیماری‌ها استفاده می‌شود.

• Decision Tree
در این الگوریتم برای طبقه بندی داده‌ها یک درخت تصمیم‌گیری ساخته می‌شود. در هر گره از درخت، یک شرط بر اساس ویژگی‌های داده‌ها قرار می‌گیرد و با توجه به شرط، داده‌ها به گره‌های فرزند تقسیم می‌شوند. این فرآیند تا رسیدن به گره‌های پایانی ادامه می‌یابد.

• Random Forest
این الگوریتم بر اساس ترکیب چندین درخت تصمیم‌گیری (decision tree) کار می‌کند. هر درخت در این الگوریتم به‌صورت تصادفی از داده‌ها و ویژگی‌های موجود ساخته می‌شوند؛ سپس نتیجه طبقه بندی با استفاده از رأی گیری اکثریت درخت‌ها تعیین می‌شود.

• Logistic Regression
این الگوریتم برای مسائل طبقه بندی دودویی (binary classification) استفاده می‌شود. احتمال وقوع یک رویداد در هر دسته با استفاده از تابع لجستیک محاسبه می‌شود سپس بر اساس آن، داده‌ها به دسته‌های مختلف تقسیم می‌شوند.

• Support Vector Machines (SVM)
این الگوریتم مخصوص طبقه بندی داده‌های خطی و غیرخطی است. SVM با استفاده از یک صفحه (برای داده‌های خطی) یا یک ابر صفحه (برای داده‌های غیرخطی) داده‌ها را به دسته‌های مختلف تقسیم می‌کند.

• K Nearest Neighbours (KNN)
در این الگوریتم برای پیش بینی برچسب یک نمونه جدید، نزدیک‌ترین همسایگان آن در مجموعه داده‌های آموزشی پیدا می‌شوند و برچسب بیشترین تکرار را به نمونه جدید اختصاص می‌دهند. روش کار الگوریتم KNN به این صورت است که ابتدا فاصله نمونه جدید با همه نمونه‌های آموزشی محاسبه می‌شود؛ سپس K نزدیک‌ترین همسایگان با کم‌ترین فاصله به نمونه جدید انتخاب می‌شوند. در نهایت با توجه به برچسب‌های همسایگان انتخاب شده، برچسب نمونه جدید تعیین می‌شود. عدد K در الگوریتم KNN نشان دهنده تعداد همسایگانی است که در نظر گرفته می‌شوند. انتخاب درست مقدار K برای هر مسئله ممکن است تأثیر زیادی بر دقت الگوریتم داشته باشد.

• رگرسیون خطی
در الگوریتم رگرسیون خطی رابطه خطی بین ورودی و خروجی پیدا می‌شود. با استفاده از این رابطه، مقدار خروجی برای ورودی‌های جدید پیش‌بینی می‌شود.

• K-Means Clustering
در K-Means Clustering، داده‌ها به K خوشه تقسیم می‌شوند به‌طوری که داده‌های هر خوشه به یکدیگر نزدیک باشند و از داده‌های خوشه‌های دیگر فاصله داشته باشند.

• Gradient Boosting
این الگوریتم بر اساس ترکیب چندین مدل ضعیف (weak learner) کار می‌کند. در هر مرحله یک مدل ضعیف به مدل قبلی اضافه می‌شود و با استفاده از تابع هدف (objective function) وزن‌های نمونه‌ها تعیین می‌شود.

• XGBoost
XGBoost نسخه بهبود یافته‌ای از Gradient Boosting است و با استفاده از روش‌های بهینه سازی و فشرده سازی عملکرد و سرعت آن را بهبود می‌بخشد.

جایگاه هوش مصنوعی در ایران

در ایران هوش مصنوعی در حال توسعه است و در برخی از حوزه‌ها هم مورد استفاده قرار می‌گیرد؛ به‌عنوان‌مثال شرکت‌های ایرانی در حوزه تشخیص چهره توانستند سیستم‌های تشخیص چهره پیشرفته‌ای را تولید کنند که در سیستم‌های حضور و غیاب و امنیت استفاده می‌شود یا در حوزه تشخیص اجسام نیز پروژه‌هایی در دانشگاه‌ها و شرکت‌های فناوری ایران در حال انجام است.
علاوه بر این در حوزه رباتیک هم تحقیقات و پروژه‌هایی در دانشگاه‌ها و صنعت صورت می‌گیرد. برخی از شرکت هوش مصنوعی نیز ربات‌های هوشمندی را تولید کردند که قادر به تشخیص و پاسخ به محیط و وظایف مختلف هستند. در حوزه اقتصاد، هوش مصنوعی به تحلیل داده‌ها و پیش‌بینی رویدادها کمک می‌کند. برخی شرکت‌ها و مؤسسات تحقیقاتی در ایران توانستند الگوریتم‌های یادگیری ماشین را برای تحلیل داده‌های اقتصادی و مالی استفاده کنند. به‌طورکلی هوش مصنوعی در ایران هنوز در مراحل اولیه توسعه است و به سرمایه‌گذاری و تحقیقات بیشتری نیاز دارد.

کاربرد هوش مصنوعی
• تشخیص اجسام (Object Recognition)
• تشخیص چهره (Face Recognition)

• تشخیص گفتار (Speech Recognition)
• دیپ‌فیک و شبکه‌های مولد (Deepfakes and Generative AI)

• رباتیک و هوش مصنوعی
• هوش مصنوعی در حوزه کسب و کار
• هوش مصنوعی در اقتصاد
• هوش مصنوعی در حوزه آموزش و پرورش
• در حوزه تولید
• در برقراری امنیت
• هوش مصنوعی و تفسیر داده‌ها
• هوش مصنوعی در ورزش
• هوش مصنوعی در شبکه‌های اجتماعی
• در خدمات حقوقی
• حوزه رادیولوژی
و…

چالش‌های هوش مصنوعی

اگر چه از سال ۲۰۲۳ حوزه هوش مصنوعی AI شاهد پیشرفت‌های قابل توجهی بوده و توجهات گسترده‌ای را به سمت خود جلب کرده و اما در میان این پیشرفت‌ها باید اذعان کنیم که سفر به سمت هوش مصنوعی بدون چالش نیست. این چالش‌ها در هوش مصنوعی پیچیدگی‌های بی‌شماری را در بر می‌گیرد که نیازمند بررسی دقیق و استراتژیک است. در این بخش قرار است شما را با چالش‌ها و پیچیدگی‌هایی که مانع پذیرش هوش مصنوعی می‌شود آشنا کنیم.

• عدم درک
هوش مصنوعی هنوز یک فناوری نسبتاً جدید است و چیزهای زیادی در مورد عملکرد آن وجود دارد که درک نشده است. این عدم درک مانع توسعه سیستم‌های هوش مصنوعی AI می‌شود. برای مقابله با این چالش‌ها شرکت‌ها در تلاش برای درک الگوریتم‌ها، مدل‌ها و تکنیک‌های هوش مصنوعی هستند.

• نگرانی‌های مربوط به حریم خصوصی
سیستم‌های هوش مصنوعی برای آموزش و عملکرد بهتر به حجم وسیعی از داده‌ها احتیاج دارند. این داده‌ها شامل اطلاعات شخصی و حساس می‌شوند و نگرانی‌هایی را در مورد حفظ حریم خصوصی و حفاظت از داده‌ها به وجود می‌آورند. شرکت هوش مصنوعی برای کاهش این نگرانی‌ها باید اقدامات محرمانه و قوی مانند ناشناس سازی داده‌ها یا ذخیره‌سازی امن داده‌ها را در اولویت قرار دهند. سیاست‌های شفاف استفاده از داده‌ها و کسب رضایت آگاهانه از افراد نیز اعتماد را افزایش و نگرانی‌های مربوط به حریم خصوصی را کاهش می‌دهد.

• قدرت پردازش
این سیستم‌ها از نظر محاسباتی سخت هستند و برای انجام کارهای پیچیده به قدرت پردازشی قابل توجهی نیاز دارند. این امر منجر به هزینه‌های زیرساختی بالا می‌شود. برای غلبه بر این چالش‌ها شرکت‌ها باید از پیشرفت‌های فناوری سخت‌افزاری مانند تراشه‌های تخصصی هوش مصنوعی و سیستم‌های محاسباتی توزیع‌شده استفاده کنند.

• کمبود داده
سیستم‌های هوش مصنوعی AI برای آموزش و دستیابی به عملکرد مطلوب وابسته به داده‌های بزرگ و متنوع هستند. بااین‌حال همه صنایع به حجم یا کیفیت داده مورد نیاز دسترسی ندارند. شرکت‌ها قادرند با تقویت همکاری‌ها و مشارکت‌ها برای دسترسی به مجموعه داده‌های مرتبط به این چالش‌ها در هوش مصنوعی رسیدگی کنند یا با تکنیک‌هایی مانند یادگیری انتقال، افزایش داده‌ها و تولید داده‌های مصنوعی مشکل دسترسی محدود داده‌ها را کاهش دهند.

• نتایج غیرقابل اعتماد
سیستم‌های هوش مصنوعی به دلایل مختلف مانند مجموعه داده‌های مغرضانه یا ناقص، محدودیت‌های الگوریتمی، یا پیچیدگی کار نتایج غیرقابل اعتمادی دارند. برای مقابله با این چالش‌ها شرکت‌ها باید بر فرآیندهای آزمایش و اعتبارسنجی دقیق در طول توسعه سیستم‌های هوش مصنوعی تأکید کنند. نظارت و اصلاح مستمر در رفع این چالش تأثیرگذار خواهد بود.

• عدم اعتماد
برخی از افراد ممکن است در اعتماد به سیستم‌های هوش مصنوعی تردید یا بی‌میلی نشان دهند که اغلب ناشی از عدم درک نحوه عملکرد هوش مصنوعی است. ایجاد اعتماد به شفافیت و توضیح پذیری در الگوریتم‌های هوش مصنوعی و فرآیندهای تصمیم گیری بستگی دارد. شرکت‌ها با ارائه توضیحات واضح و قابل دسترس در مورد نحوه رسیدن هوش مصنوعی AI به نتیجه اعتماد را افزایش خواهند داد. علاوه بر این رعایت استانداردها و مقررات مربوطه، اعتماد کاربران و ذینفعان را تقویت می‌کند.

• اهداف نامشخص
گاهی اوقات شرکت‌ها در تعیین اهداف برای پیاده سازی هوش مصنوعی در سازمان خود به چالش می‌خورند. توسعه سیستم‌های هوش مصنوعی کارآمد بدون هدف گذاری دشوار است. برای غلبه بر این چالش‌ها شرکت‌ها باید ارزیابی‌های جامعی از فرآیندهای کسب‌وکار خود انجام دهند و با شناسایی حوزه‌های خاصی که هوش مصنوعی ارزش را به وجود می‌آورد به این مشکل خاتمه دهند.

• مشکلات فنی
پیاده سازی هوش مصنوعی AI شامل غلبه بر چالش‌های فنی مانند ذخیره سازی داده‌ها، امنیت و مقیاس پذیری می‌شود. شرکت‌ها باید در زیرساخت‌های قوی سرمایه گذاری کنند تا قادر به مدیریت داده‌های مرتبط با هوش مصنوعی باشند. اطمینان از امنیت و حریم خصوصی داده‌ها در طول چرخه عمر هوش مصنوعی برای ایجاد اعتماد کاربران بسیار مهم است. از همان ابتدا باید مقیاس پذیری در نظر گرفته شود تا تقاضاهای سیستم‌های هوش مصنوعی برآورده شود.

• تعصب در الگوریتم‌ها
گاهی اوقات الگوریتم‌های هوش مصنوعی سوگیری‌های موجود در داده‌های مورد استفاده را به ارث می‌برند و نتایج ناعادلانه یا تبعیض‌آمیزی را ارائه می‌دهند. این چالش بسیار حیاتی است؛ زیرا سیستم‌های هوش مصنوعی نقش مهمی را در فرآیندهای تصمیم‌گیری در حوزه‌های مختلف بازی می‌کنند. برای رسیدگی به این سوگیری‌ها شرکت‌ها به اجرای استراتژی‌هایی نیاز دارند که انصاف و جامعیت را ترویج می‌دهد.

• استراتژی پیاده سازی
هیچ رویکرد یکسانی برای پیاده سازی هوش مصنوعی وجود ندارد. هر شرکت الزامات منحصربه‌فردی دارد و یک استراتژی اجرایی مؤثر باید متناسب با نیازهای خاص آن باشد. انجام ارزیابی‌های کامل از زیرساخت‌های موجود، در دسترس بودن داده‌ها و آمادگی سازمانی یک امر ضروری است. شرکت‌ها باید نقشه راه واضحی را تدوین کنند که مراحل، منابع و جدول زمانی لازم برای ادغام موفقیت آمیز هوش مصنوعی را مشخص کند.

آیا هوش مصنوعی، جای متخصصان را خواهد گرفت؟

در کارهای آزمایشگاهی، نوعی علاقه نسبت به الگوریتم‌هایی وجود دارد که از فرایندهای عملیاتی پشتیبانی می‌کنند. به‌عنوان‌مثال، در نظارت بین آزمایشگاهی بر سیستم‌های تشخیصی، این تکنولوژی می‌تواند مشکلات را پیش از وقوع خرابی یا شکست شناسایی کند. این امر، امکان به کارگیری برنامه‌های تعمیر و نگهداری فعال را فراهم می‌کند. از نظر بالینی، الگوریتم‌ها برای تصمیم‌گیری تشخیصی در پزشکی آزمایشگاهی مناسب هستند. علاوه بر این، همانند پاتولوژی (آسیب‌شناسی)، برای تجزیه و تحلیل پیش‌بینانه بر اساس الگوهای پیچیده نشانگر زیستی نیز مناسب‌اند.
ممکن است در آینده نقش رادیولوژیست، پاتولوژیست و پزشک آزمایشگاه از یکدیگر جدا شود. شاید متخصصان به «یکپارچه کننده اطلاعات تشخیصی» تبدیل شوند و با همکاری نزدیک‌تر در بخش‌های تشخیصی یکپارچه، همه قطعات پازل تشخیصی را در اسرع وقت در کنار یکدیگر قرار دهند.

تکنیک‌ها و زبان‌های برنامه‌نویسی هوش مصنوعی

Haskell یک زبان برنامه نویسی تنبل است یعنی در صورت لزوم قطعات کد را ارزیابی می‌کند.

مسئله کنترل هوش مصنوعی
مسئله کنترل هوش مصنوعی به معنای طراحی و تعیین روش‌ها و الگوریتم‌هایی است که بتوانند هوش مصنوعی را به‌طور صحیح کنترل کنند. در این مسئله هدف این است که هوش مصنوعی به‌طور مناسب و با دقت اقدامات خود را انجام دهد و به وظایف مورد نظری برسد؛ به‌عنوان‌مثال در حوزه رباتیک مسئله کنترل هوش مصنوعی شامل طراحی الگوریتم‌ها و روش‌هایی است که ربات‌ها قادر به تشخیص و پاسخ به محیط و وظایف خود باشند.

مسابقه تسلیحاتی هوش مصنوعی
مسابقه تسلیحاتی هوش مصنوعی یک رقابت است که بین سیستم‌های هوش مصنوعی برگزار می‌شود. در این مسابقه، سیستم‌های هوش مصنوعی با یکدیگر به رقابت می‌پردازند تا نشان دهند کدام یک از آن‌ها در حل یک مسئله خاص بهتر عمل می‌کنند. این مسابقه در حوزه‌های مختلفی مانند بازی‌های رایانه‌ای، تشخیص تصاویر، ترجمه ماشینی و … برگزار می‌شود. هدف اصلی مسابقه تسلیحاتی هوش مصنوعی «تحقیقات و پیشرفت در زمینه هوش مصنوعی AI» است.

مشاغل مرتبط با هوش مصنوعی
برخی از محبوب‌ترین مشاغلی که در ارتباط با هوش مصنوعی AI هستند عبارت‌اند از:
• مهندس نرم افزار
این گروه از مهندسان در حوزه توسعه نرم افزار کار می‌کنند تا محصولات جدیدی را از چت‌بات‌های جدید و بهبود یافته گرفته تا برنامه‌های خرید برای هوش مصنوعی ایجاد کنند. آن‌ها از زبان‌های برنامه نویسی مانند پایتون و جاوا استفاده می‌کنند.

• دانشمند داده
دانشمندان داده، داده‌های مورد استفاده در هوش مصنوعی را جمع آوری، سازماندهی و تجزیه و تحلیل می‌کنند. آن‌ها برچسب گذاری داده‌ها را برای کمک به بهبود هوش مصنوعی AI برای آینده بر عهده دارند. این افراد در شرکت‌های فناوری یا شرکت‌های مهندسی کار می‌کنند.

• مهندس یادگیری ماشین
مهندسان یادگیری ماشین از داده‌ها و الگوریتم‌ها برای بهبود ابزارهای هوش مصنوعی استفاده می‌کنند. آن‌ها می‌خواهند به هوش مصنوعی کمک کنند تا دقتش را بهبود ببخشد و شبیه یک انسان “فکر” کند. وظایف مهندسان یادگیری ماشین شامل تحقیق، تجزیه و تحلیل و بهینه سازی فرمول‌های یادگیری ماشین می‌شود.

• مهندس داده
این مهندسان زیرساخت‌های دیجیتالی را به وجود می‌آورند تا داده‌هایی را که ابزارهای هوش مصنوعی برای عملکرد صحیح نیاز دارند را به خوبی حفظ کنند.

• مهندس پردازش زبان طبیعی
مهندسین پردازش زبان طبیعی (NLP) سیستم‌های پردازش NLP را طراحی می‌کنند؛ به‌عنوان‌مثال آن‌ها ممکن است ابزارهایی را ایجاد کنند که به هوش مصنوعی اجازه می‌دهد الگوهای گفتار را تشخیص دهد، دقیقاً مانند الکسا که دستورات شما را دنبال می‌کند. مهندسین پردازش زبان طبیعی علاوه بر توسعه ابزارهای جدید ممکن است ابزارهای موجود را برای بهبود تجربه کاربر بهبود ببخشند.
• مهندس رباتیک
مهندسان رباتیک از ابزارهایی مانند اتوماسیون و هوش مصنوعی هوش مصنوعی ai برای توسعه سیستم‌های رباتیک استفاده می‌کنند. این سیستم‌ها ممکن است کارهای پر زحمتی را که قبلاً توسط انسان انجام می‌شد را انجام دهند مانند چیدن اقلام انبار تا تمیز کردن کف.

• توسعه دهنده هوش تجاری (BI)
توسعه دهندگان هوش تجاری به پر کردن شکاف بین داده‌های هوش مصنوعی و افرادی که با آن کار می‌کنند از جمله مدیران محصول، تحلیلگران و مدیران کمک می‌کنند. آن‌ها داده‌ها را به شیوه‌ای قابل فهم سازماندهی کرده و گزارش می‌دهند.

• مهندس یادگیری عمیق
یادگیری عمیق نوعی یادگیری ماشینی است که با شبکه‌های عصبی مصنوعی سر و کار دارد. مهندسان یادگیری عمیق به دنبال بهبود هوش مصنوعی هستند تا بتواند روش کسب دانش را بهتر تقلید کند.

• مهندس بینایی کامپیوتر
مهندسان بینایی کامپیوتر به ابزارهای مبتنی بر هوش مصنوعی کمک می‌کنند تا مانند یک انسان ببینند. آن‌ها برنامه‌هایی را ایجاد می‌کنند که می‌توانند اطلاعات بصری را شبیه به مغز انسان ایجاد و تفسیر مانند اسکن یک کد QR برای دیدن منوی رستوران.

تفاوت هوش مصنوعی و یادگیری ماشین چیست؟
بسیاری از افراد به اشتباه تصور می‌کنند که هوش مصنوعی و یادگیری ماشین مفهوم مشترک دارند، درحالی‌که کاملاً متفاوت هستند. اگر بخواهیم به‌صورت ساده‌تر این مبحث را توضیح دهیم، باید گفت که هوش مصنوعی، نرم افزار رایانه‌ای است که تکنیک‌های خلاقانه را با اعداد و ارقام ریاضی به کار می‌گیرد تا کلیه اموری که انسان‌ها برای انجام کارهای پیچیده، مانند تجزیه و تحلیل، استدلال و یادگیری انجام می‌دهند را تقلید کند. از طرفی یادگیری ماشین، زیرمجموعه‌ای از هوش مصنوعی است که الگوریتم‌های آموزش داده شده را روی داده‌ها پیاده‌سازی می‌کند تا بتواند کارهای پیچیده انسانی را به خوبی انجام دهد.
امروزه تکنولوژی به سرعت در حال پیشرفت و خلق چیزهای شگفت‌انگیز است. به‌عنوان‌مثال، هوش مصنوعی با بهره‌گیری از یادگیری ماشین، هر درخواست دیجیتالی که انسان داشته باشد را با حداکثر کیفیت انجام داده و ارائه می‌دهد. بنابراین اغلب مواقع هوش مصنوعی در کنار یادگیری ماشین می‌تواند کاربردهای جامع‌تری داشته باشد. نکته دیگر آنکه هوش مصنوعی با استفاده از کد، تکنیک و یا آمار و ارقام ریاضی تلاش می‌کند تا رفتار و کردار انسان را با استفاده از کامپیوتر تقلید کند. درصورتی‌که یادگیری ماشین به درک مفاهیم عمیق و کدنویسی شده کاری ندارد.
دامنه فعالیت هوش مصنوعی بسیار گسترده است، اما یادگیری ماشین سعی می‌کند وظیفه‌ای خاص را به ماشین یا دستگاه‌ها بیاموزد و به خودکارسازی آن‌ها کمک کند. باتوجه به آینده هوش مصنوعی و پیشرفت مداوم آن، این فناوری کم کم یاد می‌گیرد تا به‌طور کامل مثل انسان فکر کند و تصمیم بگیرد. در مقابل، یادگیری ماشین تنها قادر به انجام کارهایی است که از قبل داده‌های مربوط به آن را دریافت کرده باشد.

مطالب مرتبط

عضویت در خبرنامه